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1. Why to bother about distances between probability measures?
Measuring	the	dissimilarity	between	probability	distributions	is	at	the	heart	of	
many	ML	tasks,	including	generative	modeling.

Wasserstein	distances	have	been	shown	to	capture	the	underlying	
geometry	of	the	space	and	are	suitable	for	learning.

Calculating	Wasserstein	distances	is	computationally	expensive,	but	for	
one-dimensional	distributions	there	is	a	closed	form.	

Gaussian Mixture Models Deep Generative Modeling (e.g., GANs)
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2. Sliced Wasserstein (SW) Distances and Max-SW Distances
Formally, for probability measures 𝜇 and 𝜈 with finite p’th moment, 
defined on 𝑋 ⊂ ℝ𝑑, with corresponding densities 𝐼𝜇 and 𝐼𝜈, the SW 
is defined as: 

𝑆𝑊𝑝 𝜇, 𝜈 = 5 𝑊𝑝
𝑝 ℛ𝐼𝜇 ⋅, 𝜃 ,ℛ𝐼𝜈 ⋅, 𝜃
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where ℛ𝐼 is the Radon transform of the density 𝐼:

ℛ𝐼 𝑡, 𝜃 = 5𝐼 𝑥 𝛿 𝑡 − 𝑥, 𝜃 𝑑𝑥
𝑋

, ∀𝑡 ∈ ℝ,𝜃 ∈ 𝕊𝑑−1

In practice, we use a Monte-Carlo approximation where samples 
𝜃𝑙 𝑙 are uniformly drawn on 𝕊𝑑−1. However, in high-dimensions 

there is a high chance that 𝑊𝑝 ℛ𝐼𝜇 ⋅, 𝜃 ,ℛ𝐼𝜈 ⋅, 𝜃 ≈ 0 for 
randomly drawn 𝜃s. Max-SW was proposed to alleviate this issue:

𝑚𝑎𝑥– 𝑆𝑊𝑝 𝜇, 𝜈 = max
𝜃∈𝕊𝑑−1

𝑊𝑝 ℛ𝐼𝜇 ⋅, 𝜃 ,ℛ𝐼𝜈 ⋅, 𝜃  

3. Classic Radon Transform versus Generalized Radon Transforms 5. Numerical Experiments – GSW Flows
We consider the following problem: 

min
𝜇
𝐺𝑆𝑊𝑝(𝜇, 𝜈)

where 𝜈 is a target and 𝜇 is the source probability measure, 
initialized with a normal density. The optimization is then solved by

𝜕𝑡𝜇𝑡 = −∇	𝐺𝑆𝑊𝑝 𝜇𝑡, 𝜈 , 𝐼𝜇0 = 𝒩 0, 𝐼

Comparison between GSW and Max-GSW

4. Generalized Sliced Wasserstein (GSW) and Max-GSW Distances
Using the definition of generalized Radon transform, we define the GSW as follows:

𝐺𝑆𝑊𝑝 𝜇, 𝜈 = 5 𝑊𝑝
𝑝 𝒢𝐼𝜇 ⋅, 𝜃 , 𝒢𝐼𝜈 ⋅, 𝜃
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and similar to the SW case, we also define the max-GSW to be:

𝑚𝑎𝑥–𝐺𝑆𝑊𝑝 𝜇, 𝜈 = max
𝜃∈Ω

𝑊𝑝 𝒢𝐼𝜇 ⋅, 𝜃 , 𝒢𝐼𝜈 ⋅, 𝜃  

𝐺𝑆𝑊𝑝 and  𝑚𝑎𝑥–𝐺𝑆𝑊𝑝 are true metrics iff the generalized Radon transform is 
injective. Otherwise, they provide pseudo-metrics (i.e., identity of indiscernibles
would not be satisfied).
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Standard	Radon	Transform	– Integration	over	hyper-planes

(a)

Generalized	Radon	Transform	– Integration	over	hyper-surfaces

(b) 1:	Random	Coefficients	of	a		Homogeneous	Polynomial	of	Degree	5

The classic Radon transform integrates the 
input distribution along the hyperplanes of ℝ𝑑:

𝐻 𝑡, 𝜃 ≔ 	𝑥	| 𝑥, 𝜃 = 𝑡 ,∀𝑡 ∈ ℝ, 𝜃 ∈ 𝕊𝑑−1

The generalized Radon transform, on the 
other hand, integrates the input distribution 
along the hypersurfaces of ℝ𝑑, parameterized 
by a defining function, 𝑔(⋅, 𝜃):

𝐻 𝑡, 𝜃 ≔ 	𝑥	|𝑔(𝑥, 𝜃) = 𝑡 , ∀𝑡 ∈ ℝ,𝜃 ∈ Ω𝜃
The generalized Radon transform is defined as:

𝒢𝐼 𝑡, 𝜃 = 5𝐼 𝑥 𝛿 𝑡 − 𝑔(𝑥, 𝜃) 𝑑𝑥
𝑋

Note that 𝑔 𝑥, 𝜃 = 〈𝑥, 𝜃〉 leads to the classic 
Radon transform.

Necessary	conditions	on	the	defining	function	for	injectivity of	the	generalized	Radon	Transform
H1. 𝑔(𝑥,𝜃) is a real valued 𝐶∞ function on 𝑋×Ω𝜃
where	Ω𝜃 ⊆ (ℝ𝑛\{0})

H2. 𝑔(𝑥,𝜃) is homogeneous of degree 1 in 𝜃:
𝑔 𝑥, 𝜆𝜃 = 𝜆𝑔 𝑥,𝜃 , ∀𝜃 ∈ ℝ

H3. 𝑔(𝑥,𝜃) is non-degenerate in the sense that 
𝜕𝑔
𝜕𝑥

𝑥, 𝜃 ≠ 0, ∀ 𝑥, 𝜃 ∈ 𝑋×Ω𝜃
H4. The mixed Hessian of 𝑔(𝑥, 𝜃) is positive 
definite: det 𝜕2𝑔/𝜕𝑥𝑖𝜕𝜃𝑗 𝑖,𝑗
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