Microsoft[®] Research

ABSTRACT

Problem setting

- Batch setting: fixed set of trajectories.
- Access to the behavioral policy called baseline.
- Objective: Improve the baseline with high probability.

Reliability issues in Reinforcement Learning

Deep Reinforcement Learning is unreliable.

- No convergence/optimality proof, \rightarrow benchmark performance is the standard evaluation.
- Many, poorly understood hyperparameters, \rightarrow not reproducible from one task to another.
- Very unstable learning process [1], \rightarrow different seeds may yield very different results.

Batch Reinforcement Learning [2] is unreliable.

- Classic algorithms trained on a fixed dataset consider it as the environment (either explicitly or implicitly).
- This may be statistically insufficient, due to environmental stochasticity or function approximation.
- This leads to overestimates in the trained values.
- Classic algorithms perform planning, which turns out to be over-reliant on the overestimated states.

Safe Policy Improvement with **Baseline Bootstrapping (SPIBB, [3])**

- Recent computationally efficient and provably-safe methodology for batch RL.
- SPIBB updates the policy for frequent state-action pairs in the dataset only.
- SPIBB relies on a binary decision-making and may be too conservative.

Our contributions

- Novel batch RL method: Soft-SPIBB, a reformulation of SPIBB objective which makes it more flexible.
- Soft-SPIBB has proofs of safety guarantees and of computational efficiency in finite MDPs.
- Model-free Soft-SPIBB for function approximation.
- Empirical validation (performance, safety) on two domains.

SAFE POLICY IMPROVEMENT WITH SOFT BASELINE BOOTSTRAPPING

Kimia Nadjahi^{*}, Romain Laroche^{*}, Rémi Tachet des Combes

kimia.nadjahi@telecom-paris.fr, {romain.laroche, remi.tachet}@microsoft.com

THEORY

Safe Policy Improvement with Soft Baseline Bootstrapping (Soft-SPIBB)

- ► True environment $M^* = \langle \mathcal{X}, \mathcal{A}, P^*, R^*, \gamma \rangle$ is unknown,
- ► Maximum Likelihood Estimation (MLE) MDP built from counts: $\widehat{M} = \langle \mathcal{X}, \mathcal{A}, \widehat{P}, \widehat{R}, \gamma \rangle$.
- Error function e is derived from concentrations inequalities to bound the difference between parameters of M and M^* : e_Q between Q-functions, e_P between probabilities.
- Soft-SPIBB relies on a softer mechanism where, for a given error function, a local error budget is allocated for policy changes in each state.
- A policy π is (π_b, e, ϵ) -constrained with hyper-parameter ϵ if, for each state $x \in \mathcal{X}$,

$$\sum_{a \in \mathcal{A}} e(x, a) |\pi(a|x) - \pi_b(a|)$$

A policy π is π_b -advantageous in \widehat{M} if, for all $x \in \mathcal{X}$:

$$\sum_{a \in \mathcal{A}} \left(\mathcal{Q}_{\widehat{M}}^{\pi_b}(x, a) - V_{\widehat{M}}^{\pi_b}(x) \right) \pi(a)$$

- Fixed Two algorithms performing policy iteration in the space of (π_b, e, ϵ) -constrained policies: *Exact-Soft-SPIBB* (exact solution) and *Approx-Soft-SPIBB* (tractable approximate solution).
- \blacktriangleright Model-free formulation, which fits the Q-function to the following targets: $y_j^{(i+1)} = r_j + \gamma \sum \pi^{(i+1)}(a'|x_j)Q^{(i)}(x_j, a').$

Theorems

Safe policy improvement bounds.

► Assume π is (π_b, e_Q, ϵ) -constrained and π_b -advantageous in \widehat{M} . For each state x, with high probability $1 - \delta$:

$$V_{M^*}^{\pi}(x) - V_{M^*}^{\pi_b}(x) \geq -\frac{\epsilon}{1}$$

Assume π is (π_b, e_P, ϵ) -constrained. Suppose there exists $\kappa < \frac{1}{2}$ such that,

$$orall (x,a) \in \mathcal{X} imes \mathcal{A}, \ \sum_{x',a'} e_P(x',a') \pi_b(a'|x') P$$

We denote by $d_M(\cdot | x)$ the γ -discounted future state distribution starting from x when following π_b in M. Then, for each state x, with high probability $1 - \delta$:

$$V_{M^*}^{\pi}(x) - V_{M^*}^{\pi_b}(x) \geq V_{\widehat{M}}^{\pi}(x) - V_{\widehat{M}}^{\pi_b}(x) - 2 \left\| d_{M^*}(\cdot | x) - d_{\widehat{M}}(\cdot | x)
ight\|_1 V_{max} \ - rac{1+\gamma}{\left(1-\gamma
ight)^2 \left(1-\kappa\gamma
ight)} \, \, \epsilon V_{max} \, .$$

Analysis of Approx-Soft-SPIBB. The policy improvement step of Approx-Soft-SPIBB generates (π_b, e, ϵ) -constrained policies, and has a complexity of $\mathcal{O}(|\mathcal{X}||\mathcal{A}|^2)$.

Model-free formulation equivalence. In finite MDPs, the model-free policy iteration of (Exact or Approx)-Soft-SPIBB coincides with the model-based counterparts.

 $|\mathbf{X}| \leq \epsilon.$

 $(a|x) \geq 0.$

/ max $\mathcal{P}^*(x'|x,a) \leq \kappa e_P(x,a)$.

[1] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger. Deep RL that matters. In AAAI, 2018. [2] S. Lange, T. Gabel, and M. Riedmiller. Batch Reinforcement Learning. In *Reinforcement Learning*. 2012. [3] R. Laroche, P. Trichelair, and R. Tachet des Combes. Safe policy improvement with baseline bootstrapping. In ICML, 2019. [4] M. Petrik, M. Ghavamzadeh, and Y. Chow. Safe policy improvement by minimizing robust baseline regret. In NIPS, 2016.

 $\epsilon = 2$, influence of η

Figures (a-b) show the mean and CVaR benchmark. Figures (c-d) (resp. (e-f)) study the sensitivity to η (resp. to hyperparameters) for RaMDP [4] and Soft-SPIBB.

REFERENCES