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THEORY

Safe Policy Improvement with Soft Baseline Bootstrapping (Soft-SPIBB)

EXPERIMENTS

Random MDPs and baselines

Problem setting

» Batch setting: fixed set of trajectories.
» Access to the behavioral policy called baseline.
» Objective: Improve the baseline with high probability.

Reliability issues in Reinforcement Learning

Deep Reinforcement Learning is unreliable.
» No convergence/optimality proof,
— benchmark performance is the standard evaluation.
» Many, poorly understood hyperparameters,
— not reproducible from one task to another.
» Very unstable learning process [1],
— different seeds may yield very different results.

Batch Reinforcement Learning [2] Is unreliable.

» Classic algorithms trained on a fixed dataset consider it as
the environment (either explicitly or implicitly).

» This may be statistically insufficient, due to environmental
stochasticity or function approximation.

» 1his leads to overestimates in the trained values.

» Classic algorithms perform planning, which turns out to
be over-reliant on the overestimated states.

Safe Policy Improvement with

Baseline Bootstrapping (SPIBB, [3])

» Recent computationally efficient and provably-safe
methodology for batch RL.

» SPIBB updates the policy for frequent state-action pairs
INn the dataset only.

» SPIBB relies on a binary decision-making and may be
too conservative.

Our contributions

» Novel batch RL method: Soft-SPIBB, a reformulation of
SPIBB objective which makes it more flexible.

» S0ft-SPIBB has proofs of safety guarantees and of
computational efficiency in finite MDPs.

» Model-free Soft-SPIBB for function approximation.
» Empirical validation (performance, safety) on two domains.

» True environment M* = (X', A, P*, R*,~) is unknown,

» Maximum Likelihood Estimation (MLE) MDP built from counts: M = (X, A, P, R, ~).

» Error function e is derived from concentrations inequalities to bound the difference
between parameters of M and M*. eq between Q-functions, ep between probabilities.

» SOoft-SPIBB relies on a softer mechanism where, for a given error function, a local
error budget is allocated for policy changes in each state.

» A policy 7 is (mp, €, €)-constrained with hyper-parameter e if, for each state x € X,

> " e(x,a)|r(alx) — mp(alx)| < e

acA
» A policy 7 IS mp-advantageous In M if, for all x € X:

Y (Q%(x,a) — V(x))w(alx) > 0.
acA
» Two algorithms performing policy iteration in the space of (7, €, €)-constrained

policies: Exact-Soft-SPIBB (exact solution) and Approx-Soft-SPIBB (tractable
approximate solution).
» Model-free formulation, which fits the Q-function to the following targets:
yj(i+1) =i+ Z w(i+1)(a’\)(jf)0(i)()(jf, )
acA

Theorems

Safe policy improvement bounds. ~
» Assume 7 IS (7, €q, €)-constrained and mpy-advantageous in M. For each state x, with

high probability 1 — 4:
€ Vinax
1 —~
» Assume 7 IS (7, €p, €)-cOnstrained. Suppose there exists x < % such that,
V(x,a) € X x A Y ep(x,d)mp(d|X)P(x'|x, a) < kep(x, a) .
x'.a
We denote by dy( - |x) the ~-discounted future state distribution starting from x when
following mp INn M. Then, for each state x, with high probability 1 — ¢:

Vin(x) — Vip(x) > VE(x) = VI (X) — 2][du-( - [x) — d( - [X)||; Vimax
1+~
(1—=9)%(1 — Ky)

Analysis of Approx-Soft-SPIBB. The policy improvement step of Approx-Soft-SPIBB
generates (7, €, €)-constrained policies, and has a complexity of O(|X|[.A[?).

Vig-(x) — Vi 2(x) >

eVmax -

Model-free formulation equivalence. In finite MDPs, the model-free policy iteration
of (Exact or Approx)-Soft-SPIBB coincides with the model-based counterparts.

Randomly generated finite MDPs and baselines (using a predefined level of
p(m, M*) — p(7p, M*)

p(m, M¥) — p(mp, M*) -

performance n) — Normalized performance: p(w, M*
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(a) Mean: n=0.9,e=2 (C) 0.1%-CVaR: RaMDP, influence of 7 (e) 1%-CVaR: RaMDP, = 0.9
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(b) 1%-CVaR:n =0.9,¢ =2 (d) 0.1%-CVaR: Approx-Soft-SPIBB,  (f) 1%-CVaR: Approx-Soft-SPIBB,
e = 2, Influence of n n=0.9

Figures (a-b) show the mean and CVaR benchmark. Figures (c-d) (resp. (e-f)) study
the sensitivity to n (resp. to hyperparameters) for RaMDP [4] and Soft-SPIBB.

Helicopter domain (continuous task)
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(g) Helicopter domain (h) Helicopter benchmark with |D| = 10,000 (credit to Thiago Dias Simao)
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