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ABSTRACT

Problem setting

I Batch setting: fixed set of trajectories.
I Access to the behavioral policy called baseline.
I Objective: Improve the baseline with high probability.

Reliability issues in Reinforcement Learning

Deep Reinforcement Learning is unreliable.
I No convergence/optimality proof,
→ benchmark performance is the standard evaluation.

I Many, poorly understood hyperparameters,
→ not reproducible from one task to another.

I Very unstable learning process [1],
→ different seeds may yield very different results.

Batch Reinforcement Learning [2] is unreliable.
I Classic algorithms trained on a fixed dataset consider it as

the environment (either explicitly or implicitly).
I This may be statistically insufficient, due to environmental

stochasticity or function approximation.
I This leads to overestimates in the trained values.
I Classic algorithms perform planning, which turns out to

be over-reliant on the overestimated states.

Safe Policy Improvement with
Baseline Bootstrapping (SPIBB, [3])

I Recent computationally efficient and provably-safe
methodology for batch RL.

I SPIBB updates the policy for frequent state-action pairs
in the dataset only.

I SPIBB relies on a binary decision-making and may be
too conservative.

Our contributions

I Novel batch RL method: Soft-SPIBB, a reformulation of
SPIBB objective which makes it more flexible.

I Soft-SPIBB has proofs of safety guarantees and of
computational efficiency in finite MDPs.

I Model-free Soft-SPIBB for function approximation.
I Empirical validation (performance, safety) on two domains.

THEORY

Safe Policy Improvement with Soft Baseline Bootstrapping (Soft-SPIBB)

I True environment M∗ = 〈X ,A,P∗,R∗, γ〉 is unknown,
I Maximum Likelihood Estimation (MLE) MDP built from counts: M̂ = 〈X ,A, P̂, R̂, γ〉.
I Error function e is derived from concentrations inequalities to bound the difference

between parameters of M̂ and M∗: eQ between Q-functions, eP between probabilities.
I Soft-SPIBB relies on a softer mechanism where, for a given error function, a local

error budget is allocated for policy changes in each state.
I A policy π is (πb,e, ε)-constrained with hyper-parameter ε if, for each state x ∈ X ,∑

a∈A
e(x ,a)

∣∣π(a|x)− πb(a|x)
∣∣ ≤ ε.

I A policy π is πb-advantageous in M̂ if, for all x ∈ X :∑
a∈A

(
Qπb

M̂
(x ,a)− V πb

M̂
(x)
)
π(a|x) ≥ 0.

I Two algorithms performing policy iteration in the space of (πb,e, ε)-constrained
policies: Exact-Soft-SPIBB (exact solution) and Approx-Soft-SPIBB (tractable
approximate solution).

I Model-free formulation, which fits the Q-function to the following targets:

y (i+1)
j = rj + γ

∑
a′∈A

π(i+1)(a′|x ′j )Q(i)(x ′j ,a
′).

Theorems

Safe policy improvement bounds.
I Assume π is (πb,eQ, ε)-constrained and πb-advantageous in M̂. For each state x , with

high probability 1− δ:

V π
M∗(x)− V πb

M∗(x) ≥ −
εVmax

1− γ .

I Assume π is (πb,eP, ε)-constrained. Suppose there exists κ < 1
γ such that,

∀ (x ,a) ∈ X ×A,
∑
x ′,a′

eP(x ′,a′)πb(a′|x ′)P∗(x ′|x ,a) ≤ κeP(x ,a) .

We denote by dM( · |x) the γ-discounted future state distribution starting from x when
following πb in M. Then, for each state x , with high probability 1− δ:

V π
M∗(x)− V πb

M∗(x) ≥ V π
M̂
(x)− V πb

M̂
(x)− 2

∥∥dM∗( · |x)− dM̂( · |x)
∥∥

1Vmax

− 1 + γ

(1− γ)2 (1− κγ)
εVmax .

Analysis of Approx-Soft-SPIBB. The policy improvement step of Approx-Soft-SPIBB
generates (πb,e, ε)-constrained policies, and has a complexity of O(|X ||A|2).

Model-free formulation equivalence. In finite MDPs, the model-free policy iteration
of (Exact or Approx)-Soft-SPIBB coincides with the model-based counterparts.

EXPERIMENTS

Random MDPs and baselines

Randomly generated finite MDPs and baselines (using a predefined level of

performance η)→ Normalized performance: ρ(π,M∗) =
ρ(π,M∗)− ρ(πb,M∗)
ρ(π∗,M∗)− ρ(πb,M∗)

.
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(a) Mean: η = 0.9, ε = 2
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(c) 0.1%-CVaR: RaMDP, influence of η
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(e) 1%-CVaR: RaMDP, η = 0.9
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(b) 1%-CVaR: η = 0.9, ε = 2
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(d) 0.1%-CVaR: Approx-Soft-SPIBB,
ε = 2, influence of η
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(f) 1%-CVaR: Approx-Soft-SPIBB,
η = 0.9

Figures (a-b) show the mean and CVaR benchmark. Figures (c-d) (resp. (e-f)) study
the sensitivity to η (resp. to hyperparameters) for RaMDP [4] and Soft-SPIBB.

Helicopter domain (continuous task)

(g) Helicopter domain
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(h) Helicopter benchmark with |D| = 10,000 (credit to Thiago Dias Simao)
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